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Abstract

Herbivorous arthropods cause immense damage in crop production annually. Consumption

of these pests by insectivorous animals is of significant importance to counteract their

adverse effects. Insectivorous bats are considered amongst the most voracious predators

of arthropods, some of which are known crop pests. In vineyard-dominated Mediterranean

agroecosystems, several crops are damaged by the attack of insect pests. In this study we

aimed 1) to explore the diet and pest consumption of the lesser horseshoe bat Rhinolophus

hipposideros and 2) analyse whether the composition of pest species in its diet changes

throughout the season. We employed a dual-primer DNA metabarcoding analysis of DNA

extracted from faeces collected in three bat colonies of a wine region in Southwestern

Europe during the whole active period of most pest species. Overall, 395 arthropod prey

species belonging to 11 orders were detected; lepidopterans and dipterans were the most

diverse orders in terms of species. Altogether, 55 pest species were identified, 25 of which

are known to cause significant agricultural damage and 8 are regarded as pests affecting

grapevines. The composition of pest species in faeces changed significantly with the sea-

son, thus suggesting several periods should be sampled to assess the pest consumption by

bats. As a whole, the results imply that R. hipposideros acts as a suppressor of a wide array

of agricultural pests in Mediterranean agroecosystems. Therefore, management measures

favouring the growth of R. hipposideros populations should be considered.

Introduction

The increasingly tight regulation of chemical pesticide use in agriculture, the rapidly developed

resistance by pests and the rising consumer awareness for sustainably produced crops [1] have

stimulated growing attention on the importance of biological suppression as a pest manage-

ment tool [2,3]. The annual crop damaged by herbivorous arthropods (mainly lepidopteran

larvae) is estimated between 10–26% globally [4,5]. Further, rising temperatures due to climate

change may benefit insect pests, resulting in higher yield losses [6,7].
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Consumption of arthropod pests by insectivorous animals is of major importance [8,9].

Owing to their dietary habits, insectivorous bats are considered among the most voracious

suppressors of arthropod pests [10], in fact, daily consumption of arthropods can reach values

of over 70% of the bat body mass [11] amounting to thousands of insects [12]. In temperate

regions, both bats’ energy demand and arthropod abundance increases during warm months

[13]. Further, bats can respond to a wide diversity of arthropod pests: flying or non-flying,

diurnal or nocturnal, and prey of various sizes. The recently developed molecular techniques

like DNA metabarcoding [14] have extended our ability to detect particular insect species in

the diet of bats and several studies have reported the presence of certain pests detrimental to

corn, pecan orchards, macadamia orchards, cotton and rice [15–20]. However, these studies,

only provided a snapshot of the pest consumption at a given point in time because they did

not cover large time periods and samples were not taken regularly. Importantly, bats are able

to drastically modify their diet composition in response to changes in prey availability [21,22]

due to pests’ cyclic fluctuations, which entail sudden variations in pest numbers over time

[23]. Despite this knowledge, studies showing the pest consumption of bats within intensive

agroecosystems over time are limited (but see [21]).

Among fruit crops, grapes have the largest cultivated area and the highest global revenue

[24]. The crop is attacked during spring and summer by several pests and pathogens. In

Europe for instance, four pest species can severely damage vine grapes [25–29]: the European

grapevine moth (Lobesia botrana), the grape berry moth (Eupoecilia ambiguella), the leaf roll-

ing tortrix (Sparganothis pilleriana) and the spotted wing drosophila (Drosophila suzukii).
Altogether, the four can cause significant yield losses [26,30,31].

Bats use vineyards for both commuting and foraging [32–34]. The lesser horseshoe bat

(Rhinolophus hipposideros), commonly reported in vineyard systems [32,35,36], shows a par-

ticularly adaptable foraging behaviour. Hunting close to vegetation, it is able to catch prey by

aerial hawking, gleaning fluttering prey from vegetation or even pouncing at prey on the

ground [37,38]. Its echolocation system consists of broadband and constant frequency compo-

nents in combination, which allows horseshoe bats excellent detection, localization and classi-

fication of prey [39–41]. Previous studies revealed that R. hipposideros’ diet is mainly

composed of Diptera and Lepidoptera [42–45], including species regarded as pests [42]. Given

that moths comprise major agricultural pests damaging crops worldwide [46], it is essential to

decipher the feeding habits of insectivorous bats within intensive agroecosystems to better

understand the ecosystem services provided by these insectivores, so that sustainable and

more responsible agroecosystem management policies will be implemented. Unfortunately,

studies showing bat-pest trophic interactions are still lacking in human-modified vineyard

landscapes.

Consequently, we aimed to study the diet and pest consumption of R. hipposideros dwelling

within a vineyard-dominated Mediterranean agroecosystem during the active period of most

pest species by means of metabarcoding of DNA extracted from the faeces of three bat

colonies.

Material and methods

Study area

From late May to late September 2017, we collected faeces in three maternity colonies of R.

hipposideros from Rioja wine region (Southwestern Europe). Two of the colonies, Rivas (42˚

36’ N 2˚45’ W) and Leza (42˚33’ N 2˚38’ W), roosted in human-made buildings and consisted

of 80 and 13 individuals on average respectively through the sampling season. The third roost,

occupied by 16 bats, is a winery’s cellar located in Haro (42˚35’ N 2˚49’ W). The region is
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characterized by a continental Mediterranean climate with hot, dry summers and cold winters

with annual mean rainfall around 500 mm. The landscape is dominated by grapevine with

more than 13.000 cultivated hectares (52% of the area) [47], interspersed with other minor cul-

tivations (e.g. olive groves, almond trees, cereal fields, and vegetable gardens or fruit orchards).

Additionally, patches of riparian forests of Populus nigra, P. alba, Alnus glutinosa, Fraxinus
angustifolia and Sambucus sp.; Mediterranean trees and shrubs like Quercus ilex, Q. faginea or

Q. coccifera; a few stands of pine plantations of Pinus nigra, P. pinaster, P. halepensis and P. syl-
vestris; and rivers, lakes and urban settlements complete the landscape.

Faecal samples collection

We placed stool-collecting nets under each colony two weeks before starting collecting faecal

samples. We collected bat faeces every two-weeks from late May to late September, in order to

cover the adult stage of most pest species present in the study region [48]. The Leza roost was

only occupied for a certain period, hence it allowed faecal collection only from July to mid-

August. Each roost was exclusively inhabited by R. hipposideros and the collecting nets were

cleaned after every sampling. Pellets were dried at 40˚C and then stored at -80˚C until pro-

cessed. The number of analysed samples varied with colony size, but a minimum of 20 pellets

and an average of 25 pellets were pooled per sample for each colony and two-week period.

Nonetheless, if the colony-size was large, two additional samples were gathered to completely

characterize the diet of a bat colony at a given period [49]. We homogenised each faecal sample

in a buffer solution prior to DNA extraction. The study was carried out on private lands, and

we obtained permission from owners to conduct our field sampling. No animal ethics clear-

ance was required for this study because samples were passively collected and did not involve

the manipulation of endangered or protected species.

DNA extraction, library preparation and sequencing

DNA was extracted using the DNeasy PowerSoil Kit (Qiagen) following the manufacturer’s

instructions with modifications suggested by [50]. Extraction blanks were included in each

extraction round. Two cytochrome oxidase I gene (COI) primer sets were used for each faecal

sample to maximise the diversity due to the primer-specific taxonomic bias. We used the 157

bp primer set (Zeale) ZBJ-ArtR2c and ZBJ-ArtF1c [50] and the 133 bp (Gillet) modified for-

ward primer LepF1 [51] and modified reverse primer EPT-long-univR [52] described in [53].

The combination of these two primer sets are the most cost-effective means of characterizing

diets that may include a high diversity of prey taxa [54]. We followed the 16S Metagenomic

Sequencing Library Preparation protocol by Illumina1 [55] with slight modifications. For the

first amplification process we followed the Qiagen 2X kit protocol, using 12.5 μL Qiagen Mul-

tiplex PCR kit 2x, 1.25 μL forward primer (10 μM), 1.25 μL reverse primer (10 μM), 8 μL H2O

and 2 μL DNA for a total volume of 25 μL for each sample and primer set. Each primer set was

subjected to different PCR cycling conditions (S1 Table). PCR negative controls were used.

Then, PCR products were migrated in agarose gel electrophoresis to test the efficiency and

homogeneity of amplification. Amplicons were bead-purified with CleanPCR kit (CleanNA,

PH Waddinxveen, The Netherlands) and a second PCR reaction was performed to attach dual

indices and Illumina sequencing adapters using the Nextera XT Index Kit. Once indexed and

adapters attached, samples were bead-purified, fluorometrically quantified and pooled at equal

molarities to sequence in an Illumina MiSeq with 5%.

DNA library construction and sequencing processes were done at Genomics and Proteo-

mics General Service (SGIker) of the University of the Basque Country.
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Bioinformatics processing

Paired-end reads were merged and quality-filtered using USEARCH v.10 [56] considering

only sequences with a minimum 50bp overlap and discarding sequences with quality values

inferior to Q30. We demultiplexed reads according to primers and trimmed adapter and

primer sequences using Cutadapt [57]. Sequences in samples that were identical to those in the

corresponding extraction blanks were removed and the remaining sequences clustered into

haplotypes using USEARCH’s -fastx_uniques command. Singletons and chimeras were dis-

carded. Remaining haplotypes were quality-filtered and collapsed into zero-radius operational

taxonomic units (ZOTUs), which is an amplicon sequencing error-correction method used to

infer accurate biological template sequences [58]. We manually compared ZOTUs from the

overall samples against reference sequences within the BOLD systems database (www.

boldsystems.org). Species-level assignment was conceded when query sequences matched the

reference sequences above 98.5% similarity value [59]. When the haplotype coincided with

more than one species belonging to the same genera, we made a genus-level assignment; if the

haplotype coincided with species belonging to different genera, we only included species pres-

ent in the Iberian Peninsula.

Determining the pest category

We categorised pests found in bat diets based on crop diet, prevalence areas (within or outside

the Iberian Peninsula) and according to the potential damage and economic impact they cause

[46,48,60–63]. As a result, pests were classified as follows: a) minor grapevine pests: species

affecting vineyard production but not causing economically serious losses or yield reduction;

b) major grapevine pests: species that may critically affect vineyard production with a potential

high economic impact, and c) minor or major pests of other crops.

Data analysis

Since samples come from different locations and periods, we tested for space-time interaction

as well as spatial (colonies) and temporal (two-week periods) effects on the pest species com-

position in the bats’ diet. We first Hellinger-transformed [64] presence/absence data of pests

and then a two-way ANOVA without replication was performed [65] using STImodels func-

tion with 9999 random permutations in STI 3.1.1 package [66] for R [67].

Results

We generated 2053 ZOTUs from libraries built with Zeale and Gillet primers, of which 761

(37%) were identified at the species level and assigned to 401 taxa (S2 Table). Altogether, DNA

sequences retrieved with both primer sets from the faeces of R. hipposideros were assigned to

393 arthropod species: among them, 25 are considered major pests and 29 minor pests

(Table 1). One pest, Philaenus spumarius, is a vector of the plant pathogen Xylella fastidiosa,

but it remains unclear whether it is a major or minor pest. Most of the 55 pest species were lep-

idopterans (n = 47), followed by four dipterans, three hemipterans and one coleopteran.

Among all the pest species detected in bats’ diet, six major pests and two minor pests were

potentially harmful for grapevines. The remaining insects are regarded as pests of other crop

types.

The Rivas colony accounted for 51 out of the 55 pest species, while those of Leza and Haro

accounted for 21 and 16 pest species, respectively. The sum of pest species across colonies did

not add up to 55 because some pests were detected at more than one site. The list of identified
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Table 1. List of pest species identified in faeces of R. hipposideros, affected hostplants, their corresponding pest category and the primer set with which they were

detected. Species affecting grapevine are highlighted in bold. Asterisks refer to species considered as pest locally in the Iberian Peninsula of other crops. Primer set(s):

(G) Gillet, (Z) Zeale, (GZ) both.

Order Species Family Damaged plants Pest category Primer

Lepidoptera Acleris schalleriana Tortricidae Guelder-rose, ornamentals Minor GZ

Acleris variegana Tortricidae Rosaceous (apple, pear, cherry. . .) Major GZ

Aleimma loeflingiana Tortricidae Oak, hornbeam, maple Minor� GZ

Anacampsis populella Gelechiidae Poplar, willow Minor� GZ

Ancylis achatana Tortricidae Fruit trees (apple, plum . . .) Minor GZ

Archips podana Tortricidae Polyphagous (trees, shrubs, rosaceous) Major� G

Archips rosana Tortricidae Hazelnut, rosaceous (apple, pear, plum . . .) Major� GZ

Argyresthia abdominalis Argyresthiidae Oak Minor G

Argyresthia sorbiella Argyresthiidae Rowan (Sorbus aucuparia) Minor G

Argyresthia spinosella Argyresthiidae Damson and plum Minor GZ

Bedellia somnulentella Bedellidae Convulvalaceous crops Minor GZ

Calliteara pudibunda Erebidae Beech, hop, fruit trees (apple, cherry . . .) Minor� Z

Clepsis consimilana Tortricidae Many trees and shrubs (plum, Rosaceae) Minor G

Cnephasia incertana Tortricidae Polyphagous (strawberry, grapevine. . .) Minor GZ

Cydia fagiglandana Tortricidae Beech, oak, chestnut Minor� GZ

Cydia pomonella Tortricidae Apple, pear, quince, peach, chestnut Major� GZ

Cydia splendana Tortricidae Chestnut, walnut Minor� GZ

Ditula angustiorana Tortricidae Polyphagous, fruit crops (grapevine . . .) Minor Z

Ephestia parasitella Pyralidae Polyphagous (grapevine) Major� GZ

Exoteleia dodecella Gelechiidae Pine trees Major� GZ

Gypsonoma aceriana Tortricidae Poplar Major� GZ

Hedya nubiferana Tortricidae Apple, pear, almond, apricot, cherry . . . Minor� GZ

Hedya ochroleucana Tortricidae Rosaceous (apple . . .) Minor Z

Hedya pruniana Tortricidae Rosaceous (plum, cherry, apple, pear . . .) Minor G

Lobesia botrana Tortricidae Grapevine, highbush blueberry Major� GZ

Mythimna unipuncta Noctuidae Cereals Major� Z

Neosphaleroptera nubilana Tortricidae Plum, apple and apricot Minor Z

Notocelia uddmanniana Tortricidae Blackberry, boysenberry, loganberry Major GZ

Oecophora bractella Oecophoridae Currant, mulberry tree Minor G

Orthotaenia undulana Tortricidae Trees and shrubs (alder, elm, birch, maple . . .) Minor GZ

Parornix devoniella Gracillariidae Hazelnut Minor G

Peridroma saucia Noctuidae Polyphagous (grapevine, trees, shrubs) Major� GZ

Phtorimaea operculella Gelechiidae Solanaceae family (potato) Major� Z

Phyllonorycter messaniella Gracillariidae Trees, fruit trees Minor G

Plutella xylostella Plutellidae Brassicaceous crops Major� GZ

Prays oleae Praydidae Olive Major� GZ

Recurvaria leucatella Gelechiidae Apple, pear Minor GZ

Recurvaria nanella Gelechiidae Fruit trees (apple, pear, almond, apricot . . .) Major G

Rhyacionia buoliana Tortricidae Pine trees Major� GZ

Rhyacionia pinicolana Tortricidae Pine trees Minor� G

Sparganothis pilleriana Tortricidae Grapevine Major� GZ

Spilonota ocellana Tortricidae Apple, pear, quince Minor� Z

Spodoptera exigua Noctuidae Polyphagous (grapevine, tomato, pepper . . .) Major� G

Thaumetopoea pityocampa Notodontidae Pine trees Major� GZ

Tischeria ekebladella Tischeriidae Chestnut Minor GZ

Udea ferrugalis Pyralidae Plum, gooseberry, field crops (artichoke . . .) Minor GZ

Ypsolopha scabrella Ypsolophidae Apple, pear, cherry and plum Minor GZ

(Continued)
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pest species was different with each primer set (Table 1), and thus, the number of detected pest

species increased combining the output of the two primer sets (S1 Fig).

Time had a statistically significant effect on the pest composition observed in the bats’ diet

(F = 1.839; R2 = 0.458; p =<0.001). Some grapevine pest species such as Lobesia botrana, Spar-
ganothis pilleriana, Peridroma saucia and Drosophila suzukii were regularly consumed

throughout the sampling period, while others occurred in the bats’ diet only occasionally (Fig

1). There was no space-time interaction though (F = 0.994; R2 = 0.137; p = 0.49) and pest com-

position in diet did not significantly differ among colonies (F = 0,798; R2 = 0.044; p = 0.83).

Most prey consisted of members of the Lepidoptera family (66% of identified species),

some of which have auditory defensive mechanisms against bats (S2 Fig), followed by Diptera

(20%). The remaining prey species belonged to the orders Ephemeroptera, Neuroptera, Tri-

choptera, Hemiptera, Hymenoptera, Coleoptera, Araneae, Plecoptera and Blattodea, but their

species richness was low (<2%). Within Lepidoptera, 85% of species were micromoths,

belonging primarily to the families Tortricidae, Gelechiidae, Coleophoridae and Pyralidae

(50.6% of identified Lepidoptera altogether, S2 Fig). Finally, 15 ZOTUs were assigned to taxa

considered non-prey species: namely, Chiroptera (R. hipposideros), Rodentia, fungus (Mucor-

ales, Eurotiales and Rickettsiales) mite (Trombidiformes, Mesostigmata and Sarcoptiformes),

tick (Ixodida) and moss (Orthotrichales).

Discussion

The 55 pest species consumed by R. hipposideros included insects affecting diverse types of

crops including grapevines (e.g., L. botrana, S. pilleriana, D. suzukii), fruit trees (e.g., Acleris
variegana, Cydia pomonella), olive groves (e.g., Prays oleae), cereals (e.g., Tipula paludosa,

Mythimna unipuncta), vegetables (e.g., Spodoptera exigua) or forest plantations (e.g., Thaume-
topoea pityocampa, Rhyacionia buoliana). We also found diurnal pest species—for instance

Delia platura—in the bats’ faeces; this can be explained by either the ability of rhinolophids to

detect fluttering insects resting on the vegetation during the night [38,68] or because diurnal

prey are regularly still active at dusk, co-occurring with the emergence of R. hipposideros
[69,70]. Further, the pest species consumed by bats changed with season. For instance, while

Cnephasia incertana was consumed during May and June, D. suzukii was consumed in July

and September. These patterns can be attributed to the phenology of each insect species. Insect

adaptations to environmental changes (e.g. the change in weather patterns with season) will

determine the number of insect generations per year, and thus the season in which the adult

stages of insects appear [71]. In vineyards, for instance, L. botrana completes between three

Table 1. (Continued)

Order Species Family Damaged plants Pest category Primer

Diptera Delia platura Anthomyiidae Polyphagous (cereal, bean, tomato, peas . . .) Major� GZ

Drosophila suzukii Drosophilidae Polyphagous, fruit crops (grapevine, fig . . .) Major� GZ

Tipula oleracea Tipulidae Horticultural crops (cane fruit, strawberry . . .) Minor� Z

Tipula paludosa Tipulidae Horticultural crops, cereals Major� G

Hemiptera Adelphocoris lineolatus Miridae Polyphagous (alfalfa, bean, cotton, peach . . .) Major G

Fieberiella florii Cicadellidae Rosaceous, vector of phytoplasmic diseases Major G

Philaenus spumarius Aphrophoridae Vector of Xylella fastidiosa Unknown G

Coleoptera Curculio glandium Curculionidae Oak Major� Z

https://doi.org/10.1371/journal.pone.0219265.t001
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and four generations during the flying season from April to September, whereas S. pilleriana
has just one generation from June to August [25,27].

Several studies on bat diets have detected DNA of pest arthropods, with some finding only

a few species [43,72] and others finding many (44 in Miniopterus schreibersii and Tadarida
basiliensis [20,73]). The sampling period in each of these studies did not cover longer time

periods than our study and the sampling date was randomly chosen. Our results revealed that

the composition of pest species in bat diets varied with season. Consequently, assessing pest

consumption by bats in the area demands sampling bat diets over several seasons. We covered

almost the whole vegetative period of grapevine in this geographic area as well as the flying

phases of several pest species of grapevines in temperate regions, providing representative data

on the bat-pest interaction in vineyards. Despite the fact that our research was focused on a

vineyard-dominated agroecosystem, we found insect pests associated with other crops—this

may be linked with the different habitat requirements of prey through different life stages [14].

Whereas the larval host plant of a given prey species may be associated with forest trees or

shrubs, adults can occur in diverse habitats like pastures or crops due to their dispersal abili-

ties, and variable trophic needs or phenology [74–76].

This study reaffirms the value of metabarcoding diet analyses for unveiling the interactions

of bats with agroforestry pests. Moreover, such studies are useful tools for the timely detection

Fig 1. Presence of grapevine pests in faeces of the lesser horseshoe bat R. hipposideros.

https://doi.org/10.1371/journal.pone.0219265.g001
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of insect pests and potentially harmful arthropod species which is fundamental to avoid irrepa-

rable damage to the crops [77]. In this context, our results suggest that detectability of potential

pests is, to some extent, primer-dependant. Whereas some pests were detected just with the

Gillet primers, others were only detected with Zeale’s (Table 1). Combining complementary

primer sets is therefore critical to determining the full or widest taxonomic range of prey con-

sumed by predators [54,78].

Finally, Lepidoptera and Diptera were the most diverse taxa of R. hipposideros diet, as

found in previous studies based on morphological identification of prey remains [42,44,79].

However, in contrast with prior research, we observed a high diversity of moth species.

Among the 269 lepidopteran species detected, we found mostly species belonging to the so-

called group of micromoths or small-size moths. However, we also detected moths with very

different traits, such as size, flight patterns and evasive/defensive strategies including those

with the capacity to hear bat echolocation calls (S2 Fig). This finding confirms that R. hipposi-
deros is well adapted to detect and prey on small size lepidopterans in accordance to its high-

frequency calls [80–82], and it can overcome the defensive mechanisms of moths [83], which

comprise the major agricultural pests that damage crops globally [46].

Conclusions

This research reveals the pest consumption of Rhinolophus hipposideros within vineyard agroe-

cosystems, and consequently, points at the potential ecosystem service provided by the species

in a modified agricultural landscape.

Secondly, due to its putative contribution to crop production, this bat should be integrated

into pest management practices, for example, promoting the establishment of new popula-

tions. Looking forward, the application of organic farming practices [84], bat roosts protection

initiatives and the construction of artificial roosts [85] will be essential steps to strengthen

these bat populations. Further, in order to gain insight on the interaction of bats and pests, the

variation of pest consumption should be investigated across the bat community and along the

life cycle of pests sharing the agroecosystem. Deciphering how bats respond to changes in pest

communities is of particular importance not only to characterise the foraging behaviour of

bats against pests, but also to manage the negative impacts of pests through consumption by

insectivorous bats.
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cavernı́colas mediante refugios artificiales. Barbastella. 2017; 10 (1).

Pest consumption in a vineyard system by the lesser horseshoe bat

PLOS ONE | https://doi.org/10.1371/journal.pone.0219265 July 18, 2019 13 / 13

https://doi.org/10.1371/journal.pone.0219265

