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Abstract 

Background:  Lung cancer is the primary cause of cancer-related deaths worldwide. The human lung serves as a 
niche to a unique and dynamic bacterial community that is related to the development of multiple diseases. Here, we 
investigated the differences in the lung microbiomes of patients with lung cancer.

Methods:  16S rRNA sequencing was performed to evaluate the respiratory tract microbiome present in the bron‑
choalveolar lavage fluid. Patients were stratified based on programmed death-ligand 1 (PD-L1) expression levels and 
immunotherapy responses.

Results:  In total, 84 patients were prospectively analyzed, of which 59 showed low (< 10%), and 25 showed high 
(≥ 10%) PD-L1 expression levels. The alpha and beta diversities did not significantly differ between the two groups. 
Veillonella dispar was dominant in the high-PD-L1 group; the population of Neisseria was significantly higher in the 
low-PD-L1 group than in the high-PD-L1 group. In the immunotherapy responder group, V. dispar was dominant, 
while Haemophilus influenzae and Neisseria perflava were dominant in the non-responder group.

Conclusion:  The abundances of Neisseria and V. dispar differed significantly in relation to PD-L1 expression levels and 
immunotherapy responses.
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Background
Lung cancer is the main cause of cancer-related deaths 
worldwide. In 2020, 228,820 cases reported in the United 
States were attributed to lung cancer, which was approxi-
mately a quarter of all reported cancer-related deaths 

[1, 2]. Targeted therapy for biomarkers, such as epider-
mal growth factor receptor, anaplastic lymphoma kinase, 
receptor tyrosine kinase ROS1, receptor tyrosine kinase 
RET, serine/threonine-protein kinase B-Raf, and immu-
notherapy using anticancer drugs such as checkpoint 
inhibitors result in relatively high progression-free sur-
vival and total survival, compared to traditional anti-
cancer drug treatments (for example, platinum-based 
chemotherapy). However, the prognosis of lung cancer 
patients remains poor [3].

The human lungs serve as a niche for a unique and 
dynamic bacterial community, characterized by the bi-
directional movement of non-sterile air and mucus in the 
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airways [4]. During respiratory diseases, significant dif-
ferences in community composition between healthy and 
diseased lungs were observed [5]. Recent studies using 
next-generation sequencing have revealed that the lung 
microbiome in patients with lung cancer differs from that 
in healthy individuals [6–8]. Several studies have sug-
gested a link between the lung microbiome and chronic 
lung diseases such as asthma, chronic obstructive pulmo-
nary disease (COPD), cystic fibrosis, idiopathic pulmo-
nary fibrosis, and respiratory infection [5]. For example, 
previous COPD studies on the microbiome showed that 
its severity increases as microbiome diversity decreases 
and that the microbiome affects the acute exacerbation of 
COPD [9]. Microbiota have been shown to modulate the 
efficacy and toxicity of cancer therapy, including chemo-
therapy and immunotherapy [10]. Preclinical data have 
suggested that modulation of the microbiota may present 
a novel strategy for improving the efficacy of immuno-
therapies for cancer, particularly, checkpoint blockade 
approaches targeting the cytotoxic T-lymphocyte-associ-
ated protein 4 and programmed cell death protein 1 (PD-
1) pathways[11, 12].

Understanding the mechanisms through which micro-
organisms present in the respiratory tract may influence 
lung carcinoma development and treatment efficacy may 
be the key to predict the risk of cancer development and 
improve treatment efficacy and safety [13].

Microbial changes are thought to be associated with 
the accumulation of a PD-L1 dependent T regulatory 
cell population that promotes tolerance to environmen-
tal allergens [14]. Therefore, we hypothesized that the 
composition of the microbiome might differ based on 
PD-L1 expression levels. This study aimed to investi-
gate the microbial differences in patients with lung can-
cer according to PD-L1 expression levels. In addition, 
we investigated whether there was a difference in the 
microbiome between responders and non-responders to 
immunotherapy.

Methods
Patient recruitment and sample collection
From June 1, 2018, to June 31, 2020, we prospectively 
recruited 84 patients who were pathologically diagnosed 
with non-small cell lung cancer (NSCLC) in two tertiary 
hospitals, Severance Hospital and Seoul National Uni-
versity Bundang Hospital, South Korea. Bronchoalveolar 
lavage (BAL) fluid samples were collected by a bronchos-
copy specialist using a sterile bronchoscope. PD-L1 
expression was measured from lung cancer biopsy via 
bronchoscopy, percutaneous CT-guided needle biopsy, 
and intraoperative thoracoscopy using the Tumor Pro-
portion Score (TPS) by immunohistochemistry in tumor 
tissue. The cut-off value of PD-L1 expression was set to 

10% according to a previous study showing that survival 
improvement with immunotherapy (nivolumab) was 
better than that with docetaxel for patients with PD-L1 
expression ≥ 10% [15]. Detailed methods of sample col-
lection are described in Additional file 2.

DNA extraction, polymerase chain reaction (PCR) 
amplification, and sequencing
Total DNA was extracted using the FastDNA® SPIN Kit 
for Soil (MP Biomedicals, Santa Ana, CA, USA), accord-
ing to the manufacturer’s instructions. PCR amplifica-
tion was performed using fusion primers targeting V3 
to V4 regions of the 16S rRNA gene of the extracted 
DNA. For bacterial amplification, fusion primers of 341F 
(5’-AAT​GAT​ACG​GCG​ACC​ACC​GAG​ATC​TACAC-
XXXXXXXXTCG​TCG​GCA​GCG​TC-AGA​TGT​GTA​
TAA​GAG​ACA​G-CCT​ACG​GGNGGC​WGC​AG-3’; the 
underlined sequence indicates the target region of the 
primer) and 805R (5’-CAA​GCA​GAA​GAC​GGC​ATA​CGA​
GAT​-XXXXXXXXGTC​TCG​TGG​GCT​CGG-AGA​TGT​
GTA​TAA​GAG​ACA​G-GAC​TAC​HVGGG​TAT​CTA​ATC​
C-3’) were used. Amplification was performed under 
the following conditions: initial denaturation at 95 °C for 
3 min, followed by 25 cycles of denaturation at 95 °C for 
30 s, primer annealing at 55 °C for 30 s, and extension at 
72  °C for 30  s, with a final elongation step at 72  °C for 
5 min.

The PCR product was confirmed by performing 1% 
agarose gel electrophoresis and was visualized using 
a Gel Doc system (BioRad, Hercules, CA, USA). The 
amplified products were purified using the CleanPCR kit 
(CleanNA, Waddinxveen, Netherlands). Equal concen-
trations of purified products were pooled together, and 
short fragments (non-target products) were removed 
using CleanPCR. The quality and product size were 
assessed with Bioanalyzer 2100 (Agilent Technologies, 
Palo Alto, CA, USA) using a DNA 7500 chip. Mixed 
amplicons were pooled, and sequencing was performed 
at Chunlab, Inc. (Seoul, Korea) using an Illumina MiSeq 
Sequencing system (Illumina, San Diego, CA, USA) 
according to the manufacturer’s instructions. Further 
methods of taxonomic configuration are described in 
Additional file 2.

Definition of chemotherapy response
The response to cancer treatment was divided into four 
categories according to the RECIST guideline [16]. 
Accordingly, patients who showed progressive disease 
(PD) after 3 months of cancer treatment were classified 
as non-responders, whereas patients who showed stable 
disease (SD), partial response (PR), and complete resolu-
tion (CR) were considered responders.
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Statistical analysis
Categorical variables are reported as numbers (percent-
ages). Continuous variables with normal distribution 
are reported as means ± standard deviations, whereas 
variables with abnormal distribution are reported as 
medians with interquartile ranges (IQR, 25th to 75th per-
centiles). Categorical variables were compared using the 
chi-square test, and continuous variables were compared 
using either an independent t-test or Mann–Whitney U 
test according to the normality of distribution. A value 
of p < 0.05 indicated significance. All statistical analyses 
were performed using IBM SPSS Statistics version 25.0 
(IBM, Armonk, NY, USA).

Ethics approval and patient consent
The research protocol was approved by the Institutional 
Review Board of Severance Hospital, South Korea (IRB 
No. 4-0018-0313), and Seoul National University Bun-
dang Hospital, South Korea (IRB No. B-1610/365-302). 
The study design was approved by the appropriate eth-
ics review boards, and informed patient consent was 
obtained.

Results
Characteristics of the subjects
From June 1, 2018, to June 31, 2020, a total of 84 patients, 
who were pathologically diagnosed with non-small cell 
lung cancer (NSCLC) in two tertiary hospitals, Severance 
Hospital and Seoul National University Bundang Hospi-
tal, South Korea, were recruited in this prospective study.

The baseline characteristics of the two groups are 
shown in Table  1. The patients were stratified into two 
groups: 59 patients belonged to the low PD-L1 (< 10%) 
group, and 25 belonged to the high PD-L1 (≥ 10%) group. 
The mean age was 66.7 ± 11.2 years. Male was the dom-
inant sex in both groups (61.0% vs. 64.0%); most of the 
patients had adenocarcinoma (76.3% in the low PD-L1 
group vs. 76.0% in the high PD-L1 group), and the rest 
were diagnosed with squamous cell carcinoma. In the 
low PD-L1 group, the proportion of early-stage lung can-
cer was higher; contrastingly, patients with advanced-
stage lung cancer were more abundant in the high PD-L1 
group.

Of the 84 patients, the microbiome from 11 patients 
who underwent immunotherapy was analyzed (Table 2). 
Patients who showed SD, CR or PR after 3  months of 
immunotherapy were assigned to the responder group 
(eight patients), and patients showing PD were assigned 
to the non-responder group (three patients). The median 
age was 63.0 years.

Characterization of the lung microbiome based on PD‑L1 
expression levels
Figure 1a and b shows the differences in the lung micro-
biome according to PD-L1 expression levels. In the 
high-PD-L1 group, the dominant phyla were Bacte-
roidetes (39.4%), Firmicutes (30.5%), Proteobacteria 
(19.1%), Fusobacteria (6.4%), and Acinetobacter (3.2%). 
In the low-PD-L1 group, the phyla Bacteroidetes (39.4%), 

Table 1  Demographics and clinical characteristics of patients

PD-L1, programmed death-ligand 1

Characteristics PD-L1 < 10% PD-L1 ≥ 10% Total P-value

No 59 (70.2) 25 (29.8) 84 (100.0)

Age (year) 68.1 ± 10.7 63.1 ± 12.9 66.7 ± 11.2 0.080

Gender 0.797

 Male, n (%) 36 (61.0) 16 (64.0) 52 (61.9)

 Female, n (%) 23 (39.0) 9 (36.0) 32 (38.1)

Smoking history 0.574

 Current or former, n (%) 32 (54.2) 16 (64.0) 48 (57.1)

 Never, n (%) 27 (45.8) 9 (36.0) 36 (42.9)

Smoking amount (pack-years) 32.1 ± 15.6 30.2 ± 15.5 31.5 ± 15.4 0.687

Immunotherapy responder 6 (10.2) 2 (8.0)

Immunotherapy non-responder 2 (3.4) 1 (4.0)

Neutrophil–Lymphocyte ratio 2.93 (1.94, 6.13) 3.14 (1.76, 5.09) 3.05 (1.91, 5.85) 0.889

Stage 0.084

 I/II/III/IV, n 24/5/14/16 3/4/9/9 27/9/23/25

Pathologic diagnosis 0.979

 Adenocarcinoma, n (%) 45 (76.3) 19 (76.0) 64 (76.2)

 Squamous cell carcinoma, n (%) 14 (23.7) 6 (24.0) 20 (23.8)
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Proteobacteria (28.2%), Firmicutes (23.2%), Fusobacteria 
(5.1%), and Acinetobacter (2.8%) were dominant.

Proteobacteria and Firmicutes abundances differed 
between the low- and high-PD-L1 groups (Wilcoxon test, 
p = 0.051, Fig. 1c; p = 0.045, Fig. 1d). The Simpson index 
was evaluated to estimate α diversity in the lung micro-
biome that summarizes the structure of an ecological 
community with respect to its richness (number of taxo-
nomic groups), evenness (distribution of abundances of 
the groups), or both [17]. The species richness differed 
between the two groups based on the Shannon index 
(p = 0.866, Fig. 1e) and Simpson index (p = 0.247, Fig. 1f ), 
while the variability was not statistically significant. 
Principal coordinate analysis (PCoA) was performed 
to examine the similarity between bacterial communi-
ties of each group. As the operational taxonomic units 
(OTUs) of both low and high PD-L1 groups were clus-
tered by each group, the bacterial community was simi-
lar, which is indicated by a dotted line. The Bray–Curtis 
distance was calculated to estimate the β diversity in the 
lung taxonomy community structure in patients with 
NSCLC, which metrics provide a measure of the degree 
to which samples differ from one another and can reveal 
the aspects of microbial ecology that are not apparent 
from the composition of individual samples[18]. How-
ever, there was no significant difference between the 
groups according to PD-L1 expression level (Additional 
file 1: Fig. S1).

LEFse analysis to further evaluate the differences in 
these dominant genera between patients with NSCLC in 
the low- and high-PD-L1 groups showed that the genus 

Neisseria, which belongs to the phylum Proteobacteria, 
was significantly more abundant in the low-PD-L1 group 
(Wilcoxon test, p = 0.037), and was also the genus with 
the greatest influence on the distinction between the two 
groups, with an LDA (linear discriminant analysis) score 
of 4.56 (Fig.  2). Veillonella dispar, belonging to the Fir-
micutes phylum, was dominant in the high-PD-L1 group 
(Wilcoxon test, p = 0.028, Fig. 2).

Taxonomy composition in patients with lung cancer 
in the responder and non‑responder groups
In the responder group, the dominant phyla were Bac-
teroidetes (46.8%), Firmicutes (26.2%), Proteobacteria 
(19.0%), Fusobacteria (3.5%), and Acinetobacter (3.4%). 
The dominant genera were Prevotella (36.4%), Veillonella 
(12.6%), Haemophilus (11.4%), Alloprevotella (7.3%), 
Neisseria (5.1%), Streptococcus (4.9%), and Porphy-
romonas (2.0%). Dominant phyla in the non-responder 
group included Bacteroidetes (36.8%), Proteobacteria 
(34.6%), Firmicutes (20.4%), and Fusobacteria (4.4%). 
Dominant genera included Prevotella (29.2%), Haemo-
philus (26.4%), Neisseria (6.7%), Alloprevotella (6.4%), 
Veillonella (6.2%), and Megasphaera (4.4%). The domi-
nant phyla and genera in the immunotherapy responder 
and non-responder groups are shown in Fig. 3a and b.

Proteobacteria and Bacteroidetes populations were 
higher (Wilcoxon test, p = 0.414, Fig.  3c; p = 0.153, 
Fig. 3d), whereas that of the phylum Firmicutes was lower 
(Wilcoxon test, p = 0.414, Fig.  3e) in the non-responder 
group than in the responder group.

Table 2  Demographics and clinical characteristics between the immunotherapy responder and non-responder groups

Characteristics Responder Non-responder Total P-value

No 8 (72.7) 3 (27.3) 11 (100.0)

Age 63.0 (54.5, 73.8) 62.0 (50.0, 62.0) 63.0 (54.0, 74.0) 0.840

Gender 0.491

 Male, n (%) 7 (87.5) 2 (66.7) 9 (81.8)

 Female, n (%) 1 (12.5) 1 (33.3) 2 (18.2)

Smoking history 0.179

 Current or former, n (%) 7 (87.5) 2 (66.7) 9 (81.8)

 Never, n (%) 1 (12.5) 1 (33.3) 2 (18.2)

Pack-years 35.0 (30.0, 40.0) 41.5 (33.0, 41.5) 35.0 (30.0, 45.0) 0.526

Neutrophil–lymphocyte ratio 2.63 (2.13, 4.36) 1.98 (1.86, 1.98) 2.27 (1.98, 3.76) 0.133

PD-L1 ≥ 10% 2 (25.0) 1 (33.3)

PD-L1 < 10% 6 (75.0) 2 (66.7)

Stage 0.361

 I/II/III/IV, n 0/0/4/4 0/0/1/2 0/0/5/6

Pathologic diagnosis 0.661

 Adenocarcinoma, n (%) 6 (75.0) 2 (66.7) 8 (72.7)

 Squamous cell carcinoma, n (%) 2 (25.0) 1 (33.3) 3 (27.3)
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Fig. 1  Taxonomic composition of the microbiome community between subgroups. A Dominant phyla based on PD-L1 expression levels 
(N = 84); high PD-L1 expression (N = 25); low PD-L1 expression (N = 59). B Dominant genera based on PD-L1 expression levels (N = 84); high 
PD-L1 expression (N = 25); low PD-L1 expression (N = 59). Differential abundances of the phyla C Proteobacteria and D Firmicutes based on PD-L1 
expression levels. Comparison of the α diversity in bronchoalveolar lavage fluid microbiomes between the high- and low-PD-L1 expression groups. 
E Shannon index, F Simpson index. PD-L1, programmed death-ligand 1; upper box = 2nd quartile; mid line = median; lower box = 3rd quartile; 
whiskers = highest and lowest quartile
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The Shannon and Simpson indices were evaluated 
to estimate the α diversity in the lung microbiome. The 
community in each microbiome was different; however, 
the difference was not significant (p = 0.307 for Shannon, 
Fig. 2f; p = 0.540 for Simpson index, Fig. 3g).

We analyzed the differential taxonomy in BAL fluid 
samples between the patients with NSCLC in different 
response groups. LEFse analysis was performed to further 
evaluate the differences in the genera present in samples 
(Fig.  4). The population of Haemophilus, which belongs 
to the Proteobacteria phylum, was significantly higher 
in the non-responder group (Wilcoxon test, p = 0.041), 
whereas Veillonella was dominant in the responder 
group (Wilcoxon test, p = 0.041). It was also the genus 
that had the greatest effect on the difference between the 
responder and non-responder groups, with an LDA score 
of 5.1 for Haemophilus influenzae and 4.4 for Neisseria 
perflava in the non-responder group, and an LDA score 
of 4.1 for V. dispar (p = 0.041) in the responder group. 
The difference in the genera might have been related to 
the response to immunotherapy in patients with NSCLC.

Discussion
In this study, we analyzed the bronchial microbiome in 
patients with NSCLC by performing 16S rRNA gene 
sequencing to analyze the relationship among microbiota 
composition, response to immunotherapy, and PD-L1 
expression level. The ratio of Firmicutes to Bacteroi-
detes and the proportion of Veillonella were higher in the 

high-PD-L1 and immunotherapy responder groups than 
in the low-PD-L1 and non-responder groups.

In healthy individuals, the microbiota contributes to 
barrier function, communicates with the exterior, plays 
a role in immune homeostasis, and enhances antican-
cer immune surveillance via tumor antigenicity [19]. 
Additionally, the microbiota can trigger systemic innate 
immune responses via pattern recognition receptors, 
which further activate host responses against tumor cells 
[20].

Recent studies have shown that the gut microbiota 
affects the responses to immune checkpoint blockade 
therapy in patients with cancer [21–23]. The transplan-
tation of fecal microbiota has been reported to aug-
ment and restore human immune responses, resulting 
in increased sensitivity to immunotherapy [24]. Recent 
studies have reported that organ-specific microbiomes, 
such as the lung microbiome, play an important role in 
lung cancer development [25].

Overall, our study did not show significant differences 
in the abundances of phyla in culture-independent DNA-
based molecular assays; however, certain estimates of 
species richness showed  significant differences in the 
PD-L1 expression groups.

There was a significant difference in culture-based 
genus types according to the differences in PD-L1 
expression levels and immunotherapy responses. DNA 
sequencing analysis showed that the abundances of the 
genera Neisseria, Veillonella, and Haemophilus differed 
significantly between the two groups.

Regarding the LDA score indicating the effect size, 
the genus with the highest score in the low-PD-L1 
group was Neisseria of the Proteobacteria phylum. In 
the non-responder group, the LDA score of N. perflava 
was significantly increased. It was previously reported 
that Proteobacteria abundance markedly increased in 
an anti-PD-L1 immunotherapy non-responder group of 
hepatocellular carcinoma [26]. However, the causal rela-
tionship of these correlations is not understood, and fur-
ther research is needed.

V. dispar was dominant in the high-PD-L1 and immu-
notherapy responder groups. At present, studies show 
that the genus Veillonella is associated with the devel-
opment of asthma [27, 28] and acute exacerbation of 
idiopathic pulmonary fibrosis [29]. Furthermore, Yan 

Fig. 2  LEFse analysis of the collective dominant genera between 
the high- and low-PD-L1 expression level groups in patients with 
NSCLC. LDA linear discriminant analysis, LEFse LDA effect size, PD-L1 
programmed death-ligand 1. The blue bars indicate the taxa found 
in greater relative abundance in patients with low PD-L1 expression; 
the red bars indicate the taxa found in greater relative abundance in 
patients with high PD-L1 expression

(See figure on next page.)
Fig. 3  Taxonomic composition of the microbiome community between subgroups. a Dominant phyla based on response to immunotherapy 
(N = 11); Non-responder (N = 3), Responder (N = 8), b Dominant genera based on response to immunotherapy (N = 11); Non-responder (N = 3), 
Responder (N = 8). Differential abundances of phyla c Proteobacteria, d Bacteroides, and e Firmicutes between the immunotherapy responder and 
non-responder groups. Comparison of the α diversity in bronchoalveolar lavage fluid microbiomes between the responder and non-responder 
groups. f Shannon index, g Simpson index; upper box = 2nd quartile; mid line = median; lower box = 3rd quartile; whiskers = highest and lowest 
quartile
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Fig. 3  (See legend on previous page.)
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et al.[30] reported that Veillonella is abundant in patients 
with squamous cell carcinoma and adenocarcinoma of 
lung cancer, compared to healthy patients. They found 
that Veillonella may be used as a diagnostic marker to 
evaluate the development of both squamous cell car-
cinoma and adenocarcinoma [31]. Based on the find-
ings of these studies, Veillonella present in samples 
collected from the airways may be associated with the 
development of multiple lung diseases. Our study also 
showed that the proportion of Veillonella was high in the 
responder group, but further studies are required as this 
study used a small sample size.

Tumor immunotherapy is performed not only to kill 
cancer cells but also to provide a long-term protective 
immunity mediated by memory CD8+ T cells [32, 33]. 
During cancer progression, the dysfunction in CD8+ 
T cell engagement and exhaustion owing to the tumor 
microenvironment results in an impairment in their 
function [34]. Identification of bacteria that directly or 
indirectly induce antitumor activities is crucial to devel-
oping microbiome-based combinatory treatments that 
can improve the overall response rate of anti-PD-1/
PD-L1 treatment [35], which are targeted for T lympho-
cytes. We further demonstrated that the genus Veillonella 
was dominant in both high-PD-L1 and immunotherapy 
responder groups.

In this study, Haemophilus, which belongs to the phy-
lum Proteobacteria, showed the largest LDA score of 5.1 
in the non-responder group. It is known that most Hae-
mophilus strains are opportunistic pathogens that coex-
ist with the host without causing diseases and only cause 
diseases during viral infections or decreased immu-
nity. Furthermore, a study showed that Haemophilus 
was more abundant in patients with lung cancer than in 
healthy individuals [36]. Our result showed that Haemo-
philus was abundant in the non-responder group; there-
fore, it can be inferred that members of this genus lower 
the effectiveness of anticancer drugs. Thus, Haemophilus 

may be considered as a target for disease-modulating 
drugs in lung cancer treatment.

The lung microbiome affects lung immunity and 
metabolism; several studies have shown that these 
microbial niches are associated with the pathogenesis of 
COPD, asthma, cystic fibrosis, and lung cancer [37–40]. 
Similarly, our study found that the microbiome was 
related to lung cancer treatment and showed the possibil-
ity of devising a method to increase the therapeutic effect 
using these microbiomes.

This study has a few limitations. First, the daily diet and 
antibiotic use in the patients, which could have affected 
the microbial composition, were not investigated in this 
study. However, bronchoscopy for obtaining the BAL 
fluid was performed at the time of first diagnosis; there-
fore, the effect of antibiotics was considered to be mini-
mal. Second, the microbiome differed from one group 
to another; however, its role in cancer development is 
unclear. Third, we could not collect data from healthy 
controls and follow-up BALF to compare microbial dif-
ferences after cancer treatment. Fourth, the sample size 
was small to obtain a strong correlation between the 
groups [responder (n = 8) vs. non-responder (n = 3)].

Despite these limitations, this study was conducted 
prospectively using 16S rRNA sequencing analysis, which 
is more sensitive and more informative than the conven-
tional methods. More accurate and elucidating results 
can be obtained in large-scale studies.

Conclusion
The abundances of Neisseria and Veillonella differed 
significantly in relation to PD-L1 expression levels and 
immunotherapy responses. Haemophilus was dominant 
in the immunotherapy non-responder group; however, 
the next-generation sequencing analysis did not show 
significant differences between the alpha and beta diver-
sities in the lung microbiomes of patients in the immu-
notherapy responder group. Further larger cohort studies 

Fig. 4  LEFse analysis of the dominant genera between the different immunotherapy response groups of patients with NSCLC. LDA, linear 
discriminant analysis; LEFse, LDA effect size. The blue bars indicate the taxa found in greater relative abundance in patients with low PD-L1 
expression; the red bars indicate the taxa found in greater relative abundance in patients with high PD-L1 expression
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are needed to investigate the role of lung microbiome in 
lung cancer.
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